Comunicado COVID-19

Seguimos trabajando y atendiendo a alumnos actuales y futuros

Ampliar información
Master Oficial Universitario en Big Data + 60 Créditos ECTS
convocatoria
Convocatoria Abierta
modalidad
ONLINE
duracion
1500 H
creditos ects
Créditos
60 ECTS
precio
3495 EUR
convocatoria
Convocatoria
Abierta
Las acciones formativas de INESEM tienen modalidad online
Modalidad
ONLINE
Duración de las acciones formativas de INESEM
Duración
1500 H
Créditos de las acciones formativas de INESEM
Créditos
60 ECTS
Precio de las acciones formativas de INESEM
Precio
3495EUR

Presentación

Actualmente, en muchos ámbitos multisectoriales, la creciente cantidad de datos y el auge del Internet de las cosas (IoT) presentan la necesidad de analizar y procesar toda esta información para la mejora y adecuación de las estrategias de negocio de las empresas. Además, todas las empresas buscan la reducción de sus costes y mediante la aplicación de las técnicas adecuadas de Big Data este objetivo puede cumplirse.

Universidad:
Universidad E-Campus
plan de estudios

Para qué te prepara

Con este Máster de Big Data podrás analizar grandes volúmenes de datos y poder aplicarlos a cualquier sector para poder adecuar el desarrollo empresarial de cualquier organización, haciendo posible la adaptación y mejora al mercado y su consecuente. También podrás explotar todo el volumen de datos a través de programación en R y en Python. Aprenderás a aplicar todos los conocimientos en Big Data para el Cloud Computing con Linux y Azure. Su superación dará derecho a la obtención del correspondiente Título Oficial de Máster, el cual puede habilitar para la realización de la Tesis Doctoral y obtención del título de Doctor/a.


Objetivos
  • Aprender los principios del Big Data y el desarrollo de las fases de un proyecto de Big Data.
  • Conocer las herramientas existentes y su uso para analizar y explotar datos masivos.
  • Explotar datos y visualizar resultados a través de técnica de Data Science.
  • Comprender y utilizar la programación estadística con R y Python.
  • Conocer en qué consiste el Data Mining y aplicarlo correctamente.
  • Saber utilizar las analíticas web para Big Data y aplicarlas mediante Google Analytics
  • Aplicar los conocimientos de Big Data para el Cloud Computing con Linux y Azure

A quién va dirigido

El Máster de Big Data puede aplicarse a muchos sectores y perfiles, por lo que es ideal para aquellas personas que quieran conocer en qué consiste el Big Data, como pueden aplicarlo en distintos ámbitos con el objetivo de mejorar su carrera profesional y con qué herramientas se puede llevar a cabo dichos análisis de procesamiento de grandes volúmenes de datos.


Salidas Profesionales

Mediante la realización de este Máster de Big Data podrás desarrollar proyectos de Big Data, y te permitirá trabajar en puestos como:- Consultor/auditor de sistemas Big Data- Analista de datos- Arquitecto en soluciones Big Data- Experto en estrategias de desarrollo mediante Big Data- Programador de aplicaciones en Python y R - Investigación en Big Data

temario

  1. ¿Qué es Big Data?
  2. La era de las grandes cantidades de información. Historia del big data
  3. La importancia de almacenar y extraer información
  4. Big Data enfocado a los negocios
  5. Open Data
  6. Información pública
  7. IoT (Internet of Things-Internet de las cosas)
  1. Definición y relevancia de la selección de las fuentes de datos
  2. Naturaleza de las fuentes de datos Big Data
  1. Definición, Beneficios y Características
  2. Ejemplo de uso de Open Data
  1. Diagnóstico inicial
  2. Diseño del proyecto
  3. Proceso de implementación
  4. Monitorización y control del proyecto
  5. Responsable y recursos disponibles
  6. Calendarización
  7. Alcance y valoración económica del proyecto
  1. Definiendo el concepto de Business Intelligence y sociedad de la información
  2. Arquitectura de una solución de Business Intelligence
  3. Business Intelligence en los departamentos de la empresa
  4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
  5. Sistemas operacionales y Procesos ETL en un sistema de BI
  6. Ventajas y Factores de Riesgos del Business Intelligence
  1. Cuadros de Mando Integrales (CMI)
  2. Sistemas de Soporte a la Decisión (DSS)
  3. Sistemas de Información Ejecutiva (EIS)
  1. Apoyo del Big Data en el proceso de toma de decisiones
  2. Toma de decisiones operativas
  3. Marketing estratégico y Big Data
  4. Nuevas tendencias en management
  1. Concepto de web semántica
  2. Linked Data Vs Big Data
  3. Lenguaje de consulta SPARQL
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras
  1. Hadoop
  2. Pig
  3. Hive
  4. Sqoop
  5. Flume
  6. Spark Core
  7. Spark 2.0
  1. Fundamentos de Streaming Processing
  2. Spark Streaming
  3. Kafka
  4. Pulsar y Apache Apex
  5. Implementación de un sistema real-time
  1. Hbase
  2. Cassandra
  3. MongoDB
  4. NeoJ
  5. Redis
  6. Berkeley DB
  1. Arquitectura Lambda
  2. Arquitectura Kappa
  3. Apache Flink e implementaciones prácticas
  4. Druid
  5. ElasticSearch
  6. Logstash
  7. Kibana
  1. Amazon Web Services
  2. Google Cloud Platform
  1. Administración e Instalación de clusters: Cloudera y Hortonworks
  2. Optimización y monitorización de servicios
  3. Seguridad: Apache Knox, Ranger y Sentry
  1. Herramientas de visualización: Tableau y CartoDB
  2. Librerías de Visualización: D, Leaflet, Cytoscape
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de textos y Web Mining
  6. Data mining y marketing
  1. Aproximación al concepto de DataMart
  2. Bases de datos OLTP
  3. Bases de Datos OLAP
  4. MOLAP, ROLAP & HOLAP
  5. Herramientas para el desarrollo de cubos OLAP
  1. Visión General. ¿Por qué DataWarehouse?
  2. Estructura y Construcción
  3. Fases de implantación
  4. Características
  5. Data Warehouse en la nube
  1. Tipos de herramientas para BI
  2. Productos comerciales para BI
  3. Productos Open Source para BI
  4. Beneficios de las herramientas de BI
  1. 1. Business Intelligence en Excel
  2. Herramienta Powerbi
  1. Instalación y arquitectura
  2. Carga de datos
  3. Informes
  4. Transformación y modelo de datos
  5. Análisis de datos
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL. Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB. Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL.Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB. Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
  1. ¿Qué es Hadoop?
  2. El sistema de archivos HDFS
  3. Algunos comandos de referencia
  4. Procesamiento MapReduce con Hadoop
  5. El concepto de los clusters en Hadoop
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
  1. Una aproximación a Pentaho
  2. Soluciones que ofrece Pentaho
  3. MongoDB & Pentaho
  4. Hadoop & Pentaho
  5. Weka & Pentaho
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. MongoDB, Hadoop y Python. Dream Team del Big Data
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop
  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Compunting
  4. Aspectos legales en Protección de Datos
  1. Introducción
  2. El modelo relacional
  3. Lenguaje de consulta SQL
  4. MySQL. Una base de datos relacional
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA
  1. Algoritmos aplicados a la inteligencia artificial
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data
  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Inferencia: Tipos
  4. Fases de construcción de un sistema
  5. Rendimiento y mejoras
  6. Dominios de aplicación
  7. Creación de un sistema experto en C#
  8. Añadir incertidumbre y probabilidades
  1. Futuro de la inteligencia artificial
  2. Impacto de la IA en la industria
  3. El impacto económico y social global de la IA y su futuro
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
  1. Clasificadores
  2. Algoritmos
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo
  1. Redes neuronales
  2. Redes profundas y redes poco profundas
  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón
  1. Tipos de redes profundas
  2. Trabajar con TensorFlow y Python
  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa
  1. La sociedad de la información
  2. Diseño, desarrollo e implantación
  3. Factores de éxito en la seguridad de la información
  1. Seguridad a Nivel Físico
  2. Seguridad a Nivel de Enlace
  3. Seguridad a Nivel de Red
  4. Seguridad a Nivel de Transporte
  5. Seguridad a Nivel de Aplicación
  1. Concepto de seguridad TIC
  2. Tipos de seguridad TIC
  3. Aplicaciones seguras en Cloud
  4. Plataformas de administración de la movilidad empresarial (EMM)
  5. Redes WiFi seguras
  6. Caso de uso: Seguridad TIC en un sistema de gestión documental
  1. Buenas prácticas de seguridad móvil
  2. Protección de ataques en entornos de red móv
  1. Inteligencia Artificial
  2. Tipos de inteligencia artificial
  3. Impacto de la Inteligencia Artificial en la ciberseguridad
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras
  8. Vulnerabilidades de IoT
  9. Necesidades de seguridad específicas de IoT
  1. Industria 4.0
  2. Necesidades en ciberseguridad en la Industria 4.0

metodología

claustro

Claustro de Profesores Especializado

Realizará un seguimiento personalizado del aprendizaje del alumno.

campus virtual

Campus virtual

Acceso ilimitado desde cualquier dispositivo 24 horas al día los 7 días de la semana al Entorno Personal de Aprendizaje.

materiales didácticos

Materiales didácticos

Apoyo al alumno durante su formación.

material adicional

Material Adicional

Proporcionado por los profesores para profundizar en cuestiones indicadas por el alumno.

Centro de atención al estudiante (CAE)

Centro de atención al estudiante (CAE)

Asesoramiento al alumno antes, durante, y después de su formación con un teléfono directo con el claustro docente 958 050 242.

inesem emplea

INESEM emplea

Programa destinado a mejorar la empleabilidad de nuestros alumnos mediante orientación profesional de carrera y gestión de empleo y prácticas profesionales.

comunidad

Comunidad

Formada por todos los alumnos de INESEM Business School para debatir y compartir conocimiento.

revista digital

Revista Digital INESEM

Punto de encuentro de profesionales y alumnos con el que podrás comenzar tu aprendizaje colaborativo.

masterclass

Master Class INESEM

Aprende con los mejores profesionales enseñando en abierto. Únete, aprende y disfruta.

Clases online

Clases online

Podrás continuar tu formación y seguir desarrollando tu perfil profesional con horarios flexibles y desde la comodidad de tu casa.

Los estudiantes pueden seguir las clases en línea desde su propio ordenador o desde la aplicación móvil en cualquier momento, tienen a disposición un tutor personal en línea y las únicas actividades que deben realizar de forma presencial - en las sedes académicas - son los exámenes y la discusión de la tesis. Para cada una de las asignaturas se realizará un examen presencial en español, pudiendo realizarse en la sedes de Madrid o Bogotá o en cualquiera de las sedes de la Cámara de Comercio con la que la Universidad tiene un convenio para la realización de las evaluaciones presenciales.

becas

Becas y financiación del Master Oficial Universitario en Big Data + 60 Créditos ECTS

Hemos diseñado un Plan de Becas para facilitar aún más el acceso a nuestra formación junto con una flexibilidad económica. Alcanzar tus objetivos profesionales e impulsar tu carrera profesional será más fácil gracias a los planes de Inesem.

Si aún tienes dudas solicita ahora información para beneficiarte de nuestras becas y financiación.

20% Beca Antiguos Alumnos

Como premio a la fidelidad y confianza de los alumnos en el método INESEM, ofrecemos una beca del 20% a todos aquellos que hayan cursado alguna de nuestras acciones formativas en el pasado.

20% Beca Desempleo

Para los que atraviesan un periodo de inactividad laboral y decidan que es el momento idóneo para invertir en la mejora de sus posibilidades futuras.

15% Beca Emprende

Una beca en consonancia con nuestra apuesta por el fomento del emprendimiento y capacitación de los profesionales que se hayan aventurado en su propia iniciativa empresarial.

15% Beca Amigo

La beca amigo surge como agradecimiento a todos aquellos alumnos que nos recomiendan a amigos y familiares. Por tanto si vienes con un amigo o familiar podrás contar con una beca de 15%.

Financiación 100% sin intereses

* Becas aplicables sólamente tras la recepción de la documentación necesaria en el Departamento de Asesoramiento Académico. Más información en el 958 050 205 o vía email en formacion@inesem.es

* Becas no acumulables entre sí.

* Becas aplicables a acciones formativas publicadas en inesem.es

titulación

Título Oficial de Master en Big Data expedida por la Universidad e-Campus acreditado con 60 ECTS Universitarios. Su superación dará derecho a la obtención del correspondiente Título Oficial de Máster, el cual puede habilitar para la realización de la Tesis Doctoral y obtención del título de Doctor/a.

5 RAZONES

PARA ELEGIR INESEM

Hay muchas más motivos ¿Quieres conocerlos?

Por qué matricularme en INESEM
logo
ARTÍCULOS RELACIONADOS
Cargando artículos
INESEM EMPLEA

Completa tu formación con nuestro Servicio de Orientación Profesional y nuestro Programa de Entrenamiento por Competencias.

inesem emplea inesem emplea inesem emplea
Universidades colaboradoras
La universidad Antonio de Nebrija es Universidad colaboradora con INESEM Business School La universidad a Distancia de Madrid es Universidad colaboradora con INESEM Business School